skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Siegel, Jared"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We revisit the long-studied radial velocity (RV) target HD 26965 using recent observations from the NASA-NSF “NEID” precision Doppler facility. Leveraging a suite of classical activity indicators, combined with line-by-line RV analyses, we demonstrate that the claimed 45-day signal previously identified as a planet candidate is most likely an activity-induced signal. Correlating the bulk (spectrally averaged) RV with canonical line activity indicators confirms a multiday “lag” between the observed activity indicator time series and the measured RV. When accounting for this lag, we show that much of the observed RV signal can be removed by a linear detrending of the data. Investigating activity at the line-by-line level, we find a depth-dependent correlation between individual line RVs and the bulk RVs, further indicative of periodic suppression of convective blueshift causing the observed RV variability, rather than an orbiting planet. We conclude that the combined evidence of the activity correlations and depth dependence is consistent with an RV signature dominated by a rotationally modulated activity signal at a period of ∼42 days. We hypothesize that this activity signature is due to a combination of spots and convective blueshift suppression. The tools applied in our analysis are broadly applicable to other stars and could help paint a more comprehensive picture of the manifestations of stellar activity in future Doppler RV surveys. 
    more » « less
  2. Abstract The discovery and characterization of extrasolar planets using radial velocity (RV) measurements is limited by noise sources from the surfaces of host stars. Current techniques to suppress stellar magnetic activity rely on decorrelation using an activity indicator (e.g., strength of the Ca ii lines, width of the cross-correlation function, broadband photometry) or measurement of the RVs using only a subset of spectral lines that have been shown to be insensitive to activity. Here, we combine the above techniques by constructing a high-signal-to-noise activity indicator, the depth metric  ( t ) , from the most activity-sensitive spectral lines using the “line-by-line” method of Dumusque (2018). Analogous to photometric decorrelation of RVs or Gaussian progress regression modeling of activity indices, time series modeling of  ( t ) reduces the amplitude of magnetic activity in RV measurements; in an α CenB RV time series from HARPS, the RV rms was reduced from 2.67 to 1.02 m s −1 .  ( t ) modeling enabled us to characterize injected planetary signals as small as 1 m s −1 . In terms of noise reduction and injected signal recovery,  ( t ) modeling outperforms activity mitigation via the selection of activity-insensitive spectral lines. For Sun-like stars with activity signals on the m s −1 level, the depth metric independently tracks rotationally modulated and multiyear stellar activity with a level of quality similar to that of the FWHM of the CCF and log R HK ′ . The depth metric and its elaborations will be a powerful tool in the mitigation of stellar magnetic activity, particularly as a means of connecting stellar activity to physical processes within host stars. 
    more » « less
  3. Abstract The centroid energy of the Fe K α line has been used to identify the progenitors of supernova remnants (SNRs). These investigations generally considered the energy of the centroid derived from the spectrum of the entire remnant. Here we use XMM-Newton data to investigate the Fe K α centroid in 6 SNRs: 3C 397, N132D, W49B, DEM L71, 1E 0102.2-7219, and Kes 73. In Kes 73 and 1E 0102.2-7219, we fail to detect any Fe K α emission. We report a tentative first detection of Fe K α emission in SNR DEM L71 with a centroid energy consistent with its Type Ia designation. In the remaining remnants, the spatial and spectral sensitivity is sufficient to investigate spatial variations of the Fe K α centroid. We find in N132D and W49B that the centroids in different regions are consistent with those derived from the overall spectrum, although not necessarily with the remnant type identified via other means. However, in SNR 3C 397, we find statistically significant variation in the centroid of up to 100 eV, aligning with the variation in the density structure around the remnant. These variations span the intermediate space between centroid energies signifying core-collapse (CC) and Type Ia remnants. Shifting the dividing line downwards by 50 eV can place all the centroids in the CC region, but contradicts the remnant type obtained via other means. Our results show that caution must be used when employing the Fe K α centroid of the entire remnant as the sole diagnostic for typing a remnant. 
    more » « less
  4. null (Ed.)